Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 240
1.
Exp Cell Res ; 438(1): 114033, 2024 May 01.
Article En | MEDLINE | ID: mdl-38593916

Regardless of the clinical response and improved patient survival observed following treatment with BRAFi like Vemurafenib (Vem), rapid development of resistance still remains as a major obstacle in melanoma therapy. In this context, we developed and characterized two acquired Vem-resistant melanoma cell lines, A375V and SK-MEL-28V, and an intrinsically Vem-resistant cell line, RPMI-7951. Altered morphology and growth rate of the resistant cell lines displayed spindle-shaped cells with filopodia formation and enhanced proliferation rate as compared to parental cells. Further in vitro characterization in 2D models confirmed the emergence of a resistant phenotype in melanoma cells. To mimic the in vivo tumor microenvironment, spheroids were developed for both parental and resistant cell lines to recognize materialization of invadopodia structures demonstrating elevated invasiveness and proliferation of resistant cells-based spheroids, especially A375V. Importantly, we validated A375V cell line in vivo to prove its tumorigenicity and drug resistance in tumor xenograft model. Taken together, our established clinically relevant Vem-resistant tumor model could be beneficial to elucidate drug resistance mechanisms, screen and identify novel anticancer therapies to overcome BRAFi resistance in melanoma.


Cell Proliferation , Drug Resistance, Neoplasm , Melanoma , Proto-Oncogene Proteins B-raf , Vemurafenib , Humans , Melanoma/drug therapy , Melanoma/pathology , Drug Resistance, Neoplasm/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Proto-Oncogene Proteins B-raf/genetics , Vemurafenib/pharmacology , Mice , Xenograft Model Antitumor Assays , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Protein Kinase Inhibitors/pharmacology , Tumor Microenvironment/drug effects , Antineoplastic Agents/pharmacology , Mice, Nude
2.
J Nat Med ; 78(2): 342-354, 2024 Mar.
Article En | MEDLINE | ID: mdl-38324123

Evodiamine, a novel alkaloid, was isolated from the fruit of tetradium. It exerts a diversity of pharmacological effects and has been used to treat gastropathy, hypertension, and eczema. Several studies reported that evodiamine has various biological effects, including anti-nociceptive, anti-bacterial, anti-obesity, and anti-cancer activities. However, there is no research regarding its effects on drug-resistant cancer. This study aimed to investigate the effect of evodiamine on human vemurafenib-resistant melanoma cells (A375/R cells) proliferation ability and its mechanism. Cell activity was assessed using the cell counting kit-8 (CCK-8) method. Flow cytometry assay was used to assess cell apoptosis and cell cycle. A xenograft model was used to analyze the inhibitory effects of evodiamine on tumor growth. Bioinformatics analyses, network pharmacology, and molecular docking were used to explore the potential mechanism of evodiamine in vemurafenib-resistant melanoma. RT-qPCR and Western blotting were performed to reveal the molecular mechanism. The alkaloid extract of the fruit of tetradium, evodiamine showed the strongest tumor inhibitory effect on vemurafenib-resistant melanoma cells compared to treatment with vemurafenib alone. Evodiamine inhibited vemurafenib-resistant melanoma cell growth, proliferation, and induced apoptosis, conforming to a dose-effect relationship and time-effect relationship. Results from network pharmacology and molecular docking suggested that evodiamine might interact with IRS4 to suppress growth of human vemurafenib-resistant melanoma cells. Interestingly, evodiamine suppressed IRS4 expression and then inhibited PI3K/AKT signaling pathway, and thus had the therapeutic action on vemurafenib-resistant melanoma.


Alkaloids , Antineoplastic Agents , Melanoma , Quinazolines , Humans , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Melanoma/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Signal Transduction , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Proliferation , Alkaloids/pharmacology , Cell Line, Tumor , Insulin Receptor Substrate Proteins/metabolism
3.
Biol Direct ; 19(1): 6, 2024 01 04.
Article En | MEDLINE | ID: mdl-38178263

BACKGROUND: The outcome of Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) remain dismal despite the development of treatment. Targeted therapy is gaining more and more attention in improving prognosis. METHODS: Expression of BRAF was analyzed by RT-qPCR in AML and MDS patients. Cells viability treated by drugs was measured by CCK-8 assay. Network pharmacology and RNA-sequence were used to analyze the mechanism of drugs and verified in vitro and xenograft tumor model. RESULTS: Here we showed that BRAF was overexpressed in AML and MDS patients, and correlated with poor prognosis. The BRAF inhibitor-Vemurafenib (VEM) could significantly induce senescence, proliferation inhibition and apoptosis in AML cells, which can be enhanced by Bortezomib (BOR). This inhibitory effect was also verified in CD34 + cells derived from AML patients. Mechanistically, we showed that VEM combined with BOR could turn on HIPPO signaling pathway, thereby inducing cellular senescence in AML cells and xenograft mouse. CONCLUSIONS: Taken together, our findings demonstrate a significant upregulation of BRAF expression in AML and MDS patients, which is associated with unfavorable clinical outcomes. We also discovered that the BRAF inhibitor Vemurafenib induces cellular senescence through activation of the HIPPO signaling pathway. Analysis of BRAF expression holds promise as a prognostic indicator and potential therapeutic target for individuals with AML and MDS.


Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Animals , Mice , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Hippo Signaling Pathway , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/pathology
4.
J Gene Med ; 26(1): e3644, 2024 Jan.
Article En | MEDLINE | ID: mdl-38072402

BACKGROUND: Melanoma, a frequently encountered cutaneous malignancy characterized by a poor prognosis, persists in presenting formidable challenges despite the advancement in molecularly targeted drugs designed to improve survival rates significantly. Unfortunately, as more therapeutic choices have developed over time, the gradual emergence of drug resistance has become a notable impediment to the effectiveness of these therapeutic interventions. The hepatocyte growth factor (HGF)/c-met signaling pathway has attracted considerable attention, associated with drug resistance stemming from multiple potential mutations within the c-met gene. The activation of the HGF/c-met pathway operates in an autocrine manner in melanoma. Notably, a key player in the regulatory orchestration of HGF/c-met activation is the long non-coding RNA MEG3. METHODS: Melanoma tissues were collected to measure MEG3 expression. In vitro validation was performed on MEG3 to prove its oncogenic roles. Bioinformatic analyses were conducted on the TCGA database to build the MEG3-related score. The immune characteristics and mutation features of the MEG3-related score were explored. RESULTS: We revealed a negative correlation between HGF and MEG3. In melanoma cells, HGF inhibited MEG3 expression by augmenting the methylation of the MEG3 promoter. Significantly, MEG3 exhibits a suppressive impact on the proliferation and migration of melanoma cells, concurrently inhibiting c-met expression. Moreover, a predictive model centered around MEG3 demonstrates notable efficacy in forecasting critical prognostic indicators, immunological profiles, and mutation statuses among melanoma patients. CONCLUSIONS: The present study highlights the potential of MEG3 as a pivotal regulator of c-met, establishing it as a promising candidate for targeted drug development in the ongoing pursuit of effective therapeutic interventions.


Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Methylation , Cell Proliferation , Cell Line, Tumor
5.
Biochem Pharmacol ; 219: 115952, 2024 01.
Article En | MEDLINE | ID: mdl-38036189

The aim of our study is to investigate in vitro and in vivo MC4R as a novel target in melanoma using the selective antagonist ML00253764 (ML) alone and in combination with vemurafenib, a B-rafV600E inhibitor. The human melanoma B-raf mutated A-2058 and WM 266-4 cell lines were used. An MC4R null A-2058 cell line was generated using a CRISPR/Cas9 system. MC4R protein expression was analysed by western blotting, immunohistochemistry, and immunofluorescence. Proliferation and apoptotic assays were performed with ML00253764, whereas the synergism with vemurafenib was evaluated by the combination index (CI) and Loewe methods. ERK1/2 phosphorylation and BCL-XL expression were quantified by western blot. In vivo experiments were performed in Athymic Nude-Foxn1nu male mice, injecting subcutaneously melanoma cells, and treating animals with ML, vemurafenib and their concomitant combination. Comet and cytome assays were performed. Our results show that human melanoma cell lines A-2058 and WM 266-4, and melanoma human tissue, express functional MC4R receptors on their surface. MC4R receptors on melanoma cells can be inhibited by the selective antagonist ML, causing antiproliferative and proapoptotic activity through the inhibition of phosphorylation of ERK1/2 and a reduction of BCL-XL. The concomitant combination of vemurafenib and ML caused a synergistic effect on melanoma cells in vitro and inhibited in vivo tumor growth in a preclinical model, without causing mouse weight loss or genotoxicity. Our original research contributes to the landscape of pharmacological treatments for melanoma, providing MC4R antagonists as drugs that can be added to established therapies.


Melanoma , Male , Humans , Animals , Mice , Vemurafenib/pharmacology , Melanoma/metabolism , Receptor, Melanocortin, Type 4 , Cell Proliferation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm , Mutation
6.
Melanoma Res ; 34(1): 44-53, 2024 02 01.
Article En | MEDLINE | ID: mdl-37962220

Cobimetinib/vemurafenib combination therapy is approved for treatment of adults with unresectable or metastatic BRAF V600 mutated malignant melanoma (mM). The non-interventional post-authorisation safety study coveNIS collected real-world data on cobimetinib/vemurafenib treatment focussing on overall survival (OS), safety and utilization. MM patients with brain metastases are usually excluded from clinical studies. coveNIS observed 2 cohorts: mM patients without (Cohort A) and with cerebral metastases (Cohort B), aiming to close the data gap for the latter population. A direct comparison of the 2 cohorts was not intended. The primary effectiveness objective was OS; the safety objective was the incidence of all and of serious adverse events (AEs). Secondary objectives included progression-free survival (PFS), time to development of cerebral metastasis (Cohort A) and time to central nervous system relapse (Cohort B). All statistical analyses were descriptive. Between 2017 and 2021, 95 patients were included (Cohort A: 54, Cohort B: 41 patients) at 32 sites in Germany. Median OS was 21.6 months in Cohort A, 7.4 months in Cohort B. Median PFS was 6.9 months in Cohort A, 5.2 months in Cohort B. The proportion of patients experiencing any AEs was 83.3% (Cohort A) and 87.8% (Cohort B). The two most common AEs in Cohort A were 'diarrhoea' (37%), 'vomiting' (20.4%) and 'pyrexia' (20.4%); in Cohort B 'diarrhoea' (36.6%) and 'fatigue' (22%). In conclusion, the OS rates in Cohort A and Cohort B of coveNIS are in line with the OS data from other trials with BRAF/MEK inhibitors for mM. No new safety signals were observed.


Melanoma , Skin Neoplasms , Adult , Humans , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/therapeutic use , Skin Neoplasms/pathology , Mutation , Neoplasm Recurrence, Local/drug therapy , Protein Kinase Inhibitors/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects
7.
FEBS Open Bio ; 14(1): 96-111, 2024 01.
Article En | MEDLINE | ID: mdl-37953496

BRAFV600 -mutated melanoma brain metastases (MBMs) are responsive to BRAF inhibitors, but responses are generally less durable than those of extracranial metastases. We tested the hypothesis that the drug efflux transporters P-glycoprotein (P-gp; ABCB1) and breast cancer resistance protein (BCRP; ABCG2) expressed at the blood-brain barrier (BBB) offer MBMs protection from therapy. We intracranially implanted A375 melanoma cells in wild-type (WT) and Abcb1a/b;Abcg2-/- mice, characterized the tumor BBB, analyzed drug levels in plasma and brain lesions after oral vemurafenib administration, and determined the efficacy against brain metastases and subcutaneous lesions. Although contrast-enhanced MRI demonstrated that the integrity of the BBB is disrupted in A375 MBMs, vemurafenib achieved greater antitumor efficacy against MBMs in Abcb1a/b;Abcg2-/- mice compared with WT mice. Concordantly, P-gp and BCRP are expressed in MBM-associated brain endothelium both in patients and in A375 xenografts and expression of these transporters limited vemurafenib penetration into A375 MBMs. Although initially responsive, A375 MBMs rapidly developed therapy resistance, even in Abcb1a/b;Abcg2-/- mice, and this was unrelated to pharmacokinetic or target inhibition issues. Taken together, we demonstrate that both intrinsic and acquired resistance can play a role in MBMs.


Brain Neoplasms , Melanoma , Humans , Animals , Mice , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Sulfonamides/pharmacology , Indoles/pharmacology , Indoles/therapeutic use , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Neoplasm Proteins/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics
8.
Pigment Cell Melanoma Res ; 37(2): 316-328, 2024 Mar.
Article En | MEDLINE | ID: mdl-37985430

Melanoma is an aggressive malignant tumor with a poor prognosis. Vemurafenib (PLX4032, vem) is applied to specifically treat BRAF V600E-mutated melanoma patients. However, prolonged usage of vem makes patients resistant to the drug and finally leads to clinical failure. We previously tested the combination regimen of tubulin inhibitor VERU-111 with vem, as well as USP14 selective inhibitor b-AP15 in combination with vem, both of which have showed profound therapeutic effects in overcoming vem resistance in vitro and in vivo. Most importantly, we discovered that vem-resistant melanoma cell lines highly expressed E3 ligase SKP2 and DUB enzyme USP14, and we have demonstrated that USP14 directly interacts and stabilizes SKP2, which contributes to vem resistance. These works give us a clue that USP14 might be a promising target to overcome vem resistance in melanoma. MitoCur-1 is a curcumin derivative, which was originally designed to specifically target tumor mitochondria inducing redox imbalance, thereby promoting tumor cell death. In this study, we have demonstrated that it can work as a novel USP14 inhibitor, and thus bears great potential in providing an anti-tumor effect and sensitizing vem-resistant cells by inducing ferroptosis in melanoma. Application of MitoCur-1 dramatically induces USP14 inhibition and inactivation of GPX4 enzyme, meanwhile, increases the depletion of GSH and decreases SLC7A11 expression level. As a result, ferrous iron-dependent lipid ROS accumulated in the cell, inducing ferroptosis, thus sensitizes the vem-resistant melanoma cell. Interestingly, overexpression of USP14 antagonized all the ferroptosis cascade events induced by MitoCur-1, therefore, we conclude that MitoCur-1 induces ferroptosis through inhibition of USP14. We believe that by inhibition of USP14, vem resistance can be reversed and will finally benefit melanoma patients in future.


Ferroptosis , Melanoma , Humans , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Indoles/pharmacology , Drug Resistance, Neoplasm , Cell Line, Tumor , Proto-Oncogene Proteins B-raf , Ubiquitin Thiolesterase
9.
ESMO Open ; 8(6): 102038, 2023 Dec.
Article En | MEDLINE | ID: mdl-37922690

BACKGROUND: BRAF inhibitors are approved in BRAFV600-mutated metastatic melanoma, non-small-cell lung cancer (NSCLC), Erdheim-Chester disease (ECD), and thyroid cancer. We report here the efficacy, safety, and long-term results of single-agent vemurafenib given in the AcSé vemurafenib basket study to patients with various BRAF-mutated advanced tumours other than BRAFV600-mutated melanoma and NSCLC. PATIENTS AND METHODS: Patients with advanced tumours other than BRAFV600E melanoma and progressing after standard treatment were eligible for inclusion in nine cohorts (including a miscellaneous cohort) and received oral vemurafenib 960 mg two times daily. The primary endpoint was the objective response rate (ORR) estimated with a Bayesian design. The secondary outcomes were disease control rate, duration of response, progression-free survival (PFS), overall survival (OS), and vemurafenib safety. RESULTS: A total of 98 advanced patients with various solid or haematological cancers, 88 with BRAFV600 mutations and 10 with BRAFnonV600 mutations, were included. The median follow-up duration was 47.7 months. The Bayesian estimate of ORR was 89.7% in hairy cell leukaemias (HCLs), 33.3% in the glioblastomas cohort, 18.2% in cholangiocarcinomas, 80.0% in ECD, 50.0% in ovarian cancers, 50.0% in xanthoastrocytomas, 66.7% in gangliogliomas, and 60.0% in sarcomas. The median PFS of the whole series was 8.8 months. The 12-, 24-, and 36-month PFS rates were 42.2%, 23.8%, and 17.9%, respectively. Overall, 54 patients died with a median OS of 25.9 months, with a projected 4-year OS of 40%. Adverse events were similar to those previously reported with vemurafenib. CONCLUSION: Responses and prolonged PFS were observed in many tumours with BRAF mutations, including HCL, ECD, ovarian carcinoma, gliomas, ganglioglioma, and sarcomas. Although not all cancer types responded, vemurafenib is an agnostic oncogene therapy of cancers.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Melanoma , Sarcoma , Humans , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Bayes Theorem , Treatment Outcome , Sulfonamides/adverse effects , Disease-Free Survival , Mutation
10.
Biomolecules ; 13(9)2023 08 22.
Article En | MEDLINE | ID: mdl-37759675

Despite the successes of immunotherapy, melanoma remains one of the deadliest cancers, therefore, the need for innovation remains high. We previously reported anti-melanoma compounds that work by downregulating spliceosomal proteins hnRNPH1 and H2. In a separate study, we reported that these compounds were non-toxic to Balb/C mice at 50 mg/kg suggesting their utility in in vivo studies. In the present study, we aimed to assess the efficacy of these compounds by testing them in A375 cell-line xenograft in nude athymic mice. Animals were randomized into four groups (n = 12/group): 10 mg/kg vemurafenib, and 25 mg/kg 2155-14 and 2155-18 thrice a week for 15 days along with a control group. The results revealed that both 2155-14 and 2155-18 significantly decreased the growth of A375 tumors, which was comparable to vemurafenib. These results were confirmed by tumor volume, weight, and histopathological examination. In conclusion, these results demonstrate the therapeutic potential of targeting spliceosomal proteins hnRNPH1 and H2.


Melanoma , Mice , Animals , Humans , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Mice, Nude , Heterografts , Cell Line, Tumor , Xenograft Model Antitumor Assays , Melanoma/pathology , Cell Proliferation
11.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article En | MEDLINE | ID: mdl-37762086

Cutaneous melanoma is the deadliest skin cancer. Most have Ras-MAPK pathway (BRAFV600E or NRAS) mutations and highly effective targeted therapies exist; however, they and immune therapies are limited by resistance, in part driven by small GTPase (Rho and Rac) activation. To facilitate preclinical studies of combination therapies to provide durable responses, we describe the first mouse melanoma lines resistant to BRAF inhibitors. Treatment of mouse lines, YUMM1.7 and YUMMER, with vemurafenib (Vem), the BRAFV600E-selective inhibitor, resulted in high-level resistance (IC50 shifts 20-30-fold). Resistant cells showed enhanced activation of Rho and the downstream transcriptional coactivator, myocardin-related transcription factor (MRTF). Resistant cells exhibited increased stress fibers, nuclear translocation of MRTF-A, and an increased MRTF-A gene signature. Pharmacological inhibition of the Rho/MRTF pathway using CCG-257081 reduced viability of resistant lines and enhanced sensitivity to Vem. Remarkably, co-treatment of parental lines with Vem and CCG-257081 eliminated resistant colony development. Resistant cells grew more slowly in vitro, but they developed highly aggressive tumors with a shortened survival of tumor-bearing mice. Increased expression of immune checkpoint inhibitor proteins (ICIs) in resistant lines may contribute to aggressive in vivo behavior. Here, we introduce the first drug-resistant mouse melanoma models for assessing combinations of targeted and immune therapies.


Melanoma , Skin Neoplasms , Animals , Mice , Melanoma/drug therapy , Melanoma/genetics , Vemurafenib/pharmacology , Up-Regulation , Rho Factor , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Transcription Factors/genetics , Immune Checkpoint Proteins
12.
Int J Mol Sci ; 24(16)2023 Aug 17.
Article En | MEDLINE | ID: mdl-37629086

Despite the advancements in targeted therapy for BRAFV600E-mutated metastatic colorectal cancer (mCRC), the development of resistance to BRAFV600E inhibition limits the response rate and durability of the treatment. Better understanding of the resistance mechanisms to BRAF inhibitors will facilitate the design of novel pharmacological strategies for BRAF-mutated mCRC. The aim of this study was to identify novel protein candidates involved in acquired resistance to BRAFV600E inhibitor vemurafenib in BRAFV600E-mutated colon cancer cells using an integrated proteomics approach. Bioinformatic analysis of obtained proteomics data indicated actin-cytoskeleton linker protein ezrin as a highly ranked protein significantly associated with vemurafenib resistance whose overexpression in the resistant cells was additionally confirmed at the gene and protein level. Ezrin inhibition by NSC305787 increased anti-proliferative and pro-apoptotic effects of vemurafenib in the resistant cells in an additive manner, which was accompanied by downregulation of CD44 expression and inhibition of AKT/c-Myc activities. We also detected an increased ezrin expression in vemurafenib-resistant melanoma cells harbouring the BRAFV600E mutation. Importantly, ezrin inhibition potentiated anti-proliferative and pro-apoptotic effects of vemurafenib in the resistant melanoma cells in a synergistic manner. Altogether, our study suggests a role of ezrin in acquired resistance to vemurafenib in colon cancer and melanoma cells carrying the BRAFV600E mutation and supports further pre-clinical and clinical studies to explore the benefits of combined BRAF inhibitors and actin-targeting drugs as a potential therapeutic approach for BRAFV600E-mutated cancers.


Colonic Neoplasms , Melanoma , Humans , Vemurafenib/pharmacology , Actins , Proto-Oncogene Proteins B-raf/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Microfilament Proteins , Protein Kinase Inhibitors , Melanoma/drug therapy , Melanoma/genetics
13.
Cell Death Dis ; 14(8): 555, 2023 08 24.
Article En | MEDLINE | ID: mdl-37620300

Necroptosis, a programmed cell death with necrotic-like morphology, has been recognized as an important driver in various inflammatory diseases. Inhibition of necroptosis has shown potential promise in the therapy of multiple human diseases. However, very few necroptosis inhibitors are available for clinical use as yet. Here, we identified an FDA-approved anti-cancer drug, Vemurafenib, as a potent inhibitor of necroptosis. Through direct binding, Vemurafenib blocked the kinase activity of receptor-interacting protein kinases 1 (RIPK1), impeded the downstream signaling and necrosome complex assembly, and inhibited necroptosis. Compared with Necrostain-1, Vemurafenib stabilized RIPK1 in an inactive DLG-out conformation by occupying a distinct allosteric hydrophobic pocket. Furthermore, pretreatment with Vemurafenib provided strong protection against necroptosis-associated diseases in vivo. Altogether, our results demonstrate that Vemurafenib is an effective RIPK1 antagonist and provide rationale and preclinical evidence for the potential application of approved drug in necroptosis-related diseases.


Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Vemurafenib , Humans , Necrosis , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Vemurafenib/pharmacology
14.
Endocr Relat Cancer ; 30(11)2023 11 01.
Article En | MEDLINE | ID: mdl-37643458

B-Raf kinase inhibitors such as vemurafenib (PLX4032) and dabrafenib have limited therapeutic efficacy on BRAF-mutated thyroid cancer. Cancer stem cells (CSCs) play important roles in tumor recurrence, drug resistance, and metastasis. Whether CSCs play a role in dampening the antitumor activity of B-Raf kinase inhibitors remains unknown. Here, we report that vemurafenib (PLX4032) induced the expression of several stemness-related genes including Gli1, Snail, BMI1, and SOX2 in two anaplastic thyroid cancer cell lines, SW1736 and 8505C, but decreased the expression of these genes in A375 cells, a human melanoma cell line. PLX4032 promoted thyroid cancer stem cell self-renewal, as evidenced by increased numbers of aldehyde dehydrogenase-positive cells and thyrospheres. Mechanistically, PLX4032 activates the PI-3 and mitogen-activated protein kinase pathways through HER3 to cross-activate Gli1, a transcription factor of the sonic hedgehog (Shh) pathway. GANT61, a specific inhibitor of Gli1, blocked the expression of the stemness-related genes in PLX4032-treated thyroid cancer cells in vitro and in vivo in two thyroid cancer xenograft models. GANT61 treatment alone weakly inhibited SW1736 tumor growth but enhanced the antitumor activity of PLX4032 when used in combination. Our study provides mechanistic insights into how thyroid cancer poorly responds to B-Raf kinase inhibitors and suggests that targeting B-Raf and the Shh pathway in combination may overcome thyroid cancer drug resistance.


Hedgehog Proteins , Thyroid Neoplasms , Humans , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/therapeutic use , Cell Self Renewal , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Cell Line, Tumor , Neoplasm Recurrence, Local/drug therapy , Thyroid Neoplasms/genetics , Protein Kinase Inhibitors/therapeutic use
15.
Int J Biol Macromol ; 248: 125867, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37473892

BRAFV600E mutation is one of the most therapeutic targets in thyroid cancers. However, its specific inhibitors have shown little clinical benefit because they can reactivate the MAPK/ERK and PI3K/AKT pathways by feedback upregulating the transcription of HER3. Peptidyl-prolyl cis/trans isomerase Pin1 has been proven to be closely associated with tumor progression. Here, we aimed to determine antitumor activity of Pin1 inhibitor API-1 in thyroid cancer and its effect on cellular response to BRAF inhibitors. The results showed that API-1 exhibited strong antitumor activity against thyroid cancer. Meanwhile, it improved the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4032 and there was a synergistic effect between them. Specially, a combination therapy of API-1 and PLX4032 significantly inhibited cell proliferation, colony formation, and the growth of xenograft tumors as well as induced cell apoptosis in BRAF-mutant thyroid cancer cells compared with API-1 or PLX4032 monotherapy. Similar results were also observed in transgenic mice with BrafV600E-driven thyroid cancer. Mechanistically, API-1 enhanced XPO5 ability to export pre-microRNA 20a (pre-miR-20a) from the nucleus to cytoplasm, thereby promoting the maturation of miR-20a-5p. Further studies showed that miR-20a-5p specifically targeted and down-regulated HER3, thereby blocking the reactivation of MAPK/ERK and PI3K/AKT signaling pathways caused by PLX4032. These results, taken together, demonstrate that Pin1 inhibitor API-1 significantly improves the sensitivity of BRAF-mutant thyroid cancer cells to PLX4032. Thus, this study not only determines the potential antitumor activity of Pin1 inhibitor API-1 in thyroid cancer but also offers an alternative therapeutic strategy for BRAF-mutant thyroid cancers by a combination of Pin1 inhibitor and BRAF kinase inhibitor.


MicroRNAs , Thyroid Neoplasms , Humans , Mice , Animals , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Sulfonamides/pharmacology , Feedback , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Mutation , Karyopherins
16.
Cells ; 12(14)2023 07 24.
Article En | MEDLINE | ID: mdl-37508582

Malignant melanoma is challenging to treat, and metastatic cases need chemotherapy strategies. Targeted inhibition of commonly mutant BRAF V600E by inhibitors is efficient but eventually leads to resistance and progression in the vast majority of cases. Numerous studies investigated the mechanisms of resistance in melanoma cell lines, and an increasing number of in vivo or clinical data are accumulating. In most cases, bypassing BRAF and resulting reactivation of the MAPK signaling, as well as alternative PI3K-AKT signaling activation are reported. However, several unique changes were also shown. We developed and used a patient-derived tumor xenograft (PDTX) model to screen resistance evolution in mice in vivo, maintaining tumor heterogeneity. Our results showed no substantial activation of the canonical pathways; however, RNAseq and qPCR data revealed several altered genes, such as GPR39, CD27, SLC15A3, IFI27, PDGFA, and ABCB1. Surprisingly, p53 activity, leading to apoptotic cell death, was unchanged. The found biomarkers can confer resistance in a subset of melanoma patients via immune modulation, microenvironment changes, or drug elimination. Our resistance model can be further used in testing specific inhibitors that could be used in future drug development, and combination therapy testing that can overcome inhibitor resistance in melanoma.


Melanoma , Proto-Oncogene Proteins B-raf , Vemurafenib , Animals , Humans , Mice , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Phosphatidylinositol 3-Kinases/genetics , Receptors, G-Protein-Coupled/genetics , Vemurafenib/pharmacology , Vemurafenib/therapeutic use
17.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article En | MEDLINE | ID: mdl-37445794

Melanoma is difficult to treat with chemotherapy, prompting the need for new treatments. Protease inhibitors have emerged as promising candidates as tumor cell proteases promote metastasis. Researchers have developed a chimeric form of the Bauhinia bauhinioides kallikrein inhibitor, rBbKIm, which has shown negative effects on prostate tumor cell lines DU145 and PC3. Crataeva tapia bark lectin, CrataBL, targets sulfated oligosaccharides in glycosylated proteins and has also demonstrated deleterious effects on prostate and glioblastoma tumor cells. However, neither rBbKIm nor its derived peptides affected the viability of SK-MEL-28, a melanoma cell line, while CrataBL decreased viability by over 60%. Two peptides, Pep. 26 (Ac-Q-N-S-S-L-K-V-V-P-L-NH2) and Pep. 27 (Ac-L-P-V-V-K-L-S-S-N-Q-NH2), were also tested. Pep. 27 suppressed cell migration and induced apoptosis when combined with vemurafenib, while Pep. 26 inhibited cell migration and reduced nitric oxide and the number of viable cells. Vemurafenib, a chemotherapy drug used to treat melanoma, was found to decrease the release of interleukin 8 and PDGF-AB/BB cytokines and potentiated the effects of proteins and peptides in reducing these cytokines. These findings suggest that protease inhibitors may be effective in blocking melanoma cells and highlight the potential of CrataBL and its derived peptides.


Melanoma , Male , Humans , Vemurafenib/pharmacology , Melanoma/drug therapy , Cell Line, Tumor , Apoptosis , Cytokines/pharmacology , Protease Inhibitors/pharmacology
18.
Microbiol Spectr ; 11(4): e0055223, 2023 08 17.
Article En | MEDLINE | ID: mdl-37436162

Enteroviruses are one of the most abundant viruses causing mild to serious acute infections in humans and also contributing to chronic diseases like type 1 diabetes. Presently, there are no approved antiviral drugs against enteroviruses. Here, we studied the potency of vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, as an antiviral against enteroviruses. We showed that vemurafenib prevented enterovirus translation and replication at low micromolar dosage in an RAF/MEK/ERK-independent manner. Vemurafenib was effective against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect was related to a cellular phosphatidylinositol 4-kinase type IIIß (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevented infection efficiently in acute cell models, eradicated infection in a chronic cell model, and lowered virus amounts in pancreas and heart in an acute mouse model. Altogether, instead of acting through the RAF/MEK/ERK pathway, vemurafenib affects the cellular PI4KB and, hence, enterovirus replication, opening new possibilities to evaluate further the potential of vemurafenib as a repurposed drug in clinical care. IMPORTANCE Despite the prevalence and medical threat of enteroviruses, presently, there are no antivirals against them. Here, we show that vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, prevents enterovirus translation and replication. Vemurafenib shows efficacy against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect acts through cellular phosphatidylinositol 4-kinase type IIIß (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevents infection efficiently in acute cell models, eradicates infection in a chronic cell model, and lowers virus amounts in pancreas and heart in an acute mouse model. Our findings open new possibilities to develop drugs against enteroviruses and give hope for repurposing vemurafenib as an antiviral drug against enteroviruses.


Enterovirus Infections , Enterovirus , Melanoma , Animals , Mice , Humans , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , 1-Phosphatidylinositol 4-Kinase , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Enterovirus Infections/drug therapy , Mitogen-Activated Protein Kinase Kinases , Mutation
19.
Molecules ; 28(13)2023 Jul 07.
Article En | MEDLINE | ID: mdl-37446932

BRAF inhibitors have improved the treatment of advanced or metastatic melanoma in patients that harbor a BRAFT1799A mutation. Because of new insights into the role of aberrant glycosylation in drug resistance, we designed and studied three novel vemurafenib derivatives possessing pentose-associated aliphatic ligands-methyl-, ethyl-, and isopropyl-ketopentose moieties-as potent BRAFV600E kinase inhibitors. The geometries of these derivatives were optimized using the density functional theory method. Molecular dynamic simulations were performed to find interactions between the ligands and BRAFV600E kinase. Virtual screening was performed to assess the fate of derivatives and their systemic toxicity, genotoxicity, and carcinogenicity. The computational mapping of the studied ligand-BRAFV600E complexes indicated that the central pyrrole and pyridine rings of derivatives were located within the hydrophobic ATP-binding site of the BRAFV600E protein kinase, while the pentose ring and alkyl chains were mainly included in hydrogen bonding interactions. The isopropyl-ketopentose derivative was found to bind the BRAFV600E oncoprotein with more favorable energy interaction than vemurafenib. ADME-TOX in silico studies showed that the derivatives possessed some desirable pharmacokinetic and toxicologic properties. The present results open a new avenue to study the carbohydrate derivatives of vemurafenib as potent BRAFV600E kinase inhibitors to treat melanoma.


Melanoma , Proto-Oncogene Proteins B-raf , Humans , Vemurafenib/pharmacology , Ligands , Sulfonamides/pharmacology , Indoles/pharmacology , Indoles/therapeutic use , Melanoma/pathology , Protein Kinase Inhibitors/therapeutic use , Mutation , Drug Resistance, Neoplasm , Cell Line, Tumor
20.
Int Immunopharmacol ; 122: 110617, 2023 Sep.
Article En | MEDLINE | ID: mdl-37478666

This study aims to discern the possible molecular mechanism of the effect of ubiquitin-specific peptidase 18 (USP18) on the resistance to BRAF inhibitor vemurafenib in BRAF V600E mutant melanoma by regulating cyclic GMP-AMP synthase (cGAS). The cancer tissues of BRAF V600E mutant melanoma patients before and after vemurafenib treatment were collected, in which the protein expression of USP18 and cGAS was determined. A BRAF V600E mutant human melanoma cell line (A2058R) resistant to vemurafenib was constructed with its viability, apoptosis, and autophagy detected following overexpression and depletion assays of USP18 and cGAS. Xenografted tumors were transplanted into nude mice for in vivo validation. Bioinformatics analysis showed that the expression of cGAS was positively correlated with USP18 in melanoma, and USP18 was highly expressed in melanoma. The expression of cGAS and USP18 was up-regulated in cancer tissues of vemurafenib-resistant patients with BRAF V600E mutant melanoma. Knockdown of cGAS inhibited the resistance to vemurafenib in A2058R cells and the protective autophagy induced by vemurafenib in vitro. USP18 could deubiquitinate cGAS to promote its protein stability. In vivo experimentations confirmed that USP18 promoted vemurafenib-induced protective autophagy by stabilizing cGAS protein, which promoted resistance to vemurafenib in BRAF V600E mutant melanoma cells. Collectively, USP18 stabilizes cGAS protein expression through deubiquitination and induces autophagy of melanoma cells, thereby promoting the resistance to vemurafenib in BRAF V600E mutant melanoma.


Melanoma , Proto-Oncogene Proteins B-raf , Animals , Mice , Humans , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Mice, Nude , Indoles/pharmacology , Indoles/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Drug Resistance, Neoplasm/genetics , Mutation , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Protein Kinase Inhibitors/pharmacology , Autophagy/genetics , Nucleotidyltransferases/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/pharmacology
...